

Climate Change and Its Effects on Biodiversity in Tropical Forests

Dr. Jae-Won Lee

Department of Plant Science, Korea University, Seoul, South Korea

Abstract

In addition to carbon sequestration, climate regulation, and providing a means of subsistence for millions of people, tropical forests are home to the planet's most diverse array of plant and animal species. Climate change is already having a significant impact on these ecosystems, with temperatures rising, precipitation patterns changing, droughts becoming more severe, and extreme weather events becoming more common. Many plant and animal species lose habitat, become less resilient, and face an increased risk of extinction as a result of these changes, which upset ecological balance by changing species distributions, phenology, and interspecific interactions. Deforestation, habitat fragmentation, and human exploitation are already putting strains on biodiversity, and climate-driven shifts are making things worse. Invasive species and generalists may gain an edge, changing community structures, and species with small ranges, niches, or dispersal capacities are especially at risk. This includes amphibians, orchids, and some primates.

Keywords: Climate change, tropical forests, biodiversity loss, species distribution, phenology, habitat fragmentation

Introduction

Tropical forests, sometimes called "the lungs of the Earth," are home to almost half of the world's terrestrial species despite occupying just around 7% of the planet's surface area. Millions of people rely on forest products for their livelihoods, and these ecosystems are vital for many reasons, including controlling the global temperature, cycling nutrients, storing carbon, and maintaining hydrological systems. Tropical forests are not only important for the environment and the economy, but they also hold a wealth of cultural and genetic information, as well as resources for food, medicine, fiber, and ideas. Nevertheless, these priceless ecosystems are facing a mounting danger from climate change and other human-caused stresses, like overexploitation, habitat fragmentation, and deforestation. In tropical places, climate change is seen by higher average temperatures, different patterns of rainfall, more frequent and longer droughts. All of these things disturb ecological balance and force species to adapt faster than they can. Even little changes in temperature or precipitation can have a huge impact on the physiological performance, reproductive success, and survival of tropical creatures that are fine-tuned to relatively stable climates. This, in turn, can cause changes in species ranges, community composition, and ecosystem functioning. The impacts of climate change on biodiversity in tropical forests are complex and interrelated, affecting organisms directly through physiological stress, indirectly through changes to habitat, and cascadingly through disturbances to ecological interactions like seed dispersal, predator-prey dynamics, and pollination. Particularly at risk are amphibians, epiphytic orchids, and some primates due to their small ranges, specific ecological needs, or limited dispersal capacity; invasive taxa and

generalist species, on the other hand, may increase their ranges in response to changing climate, altering ecosystems in ways that reduce diversity and stability. Reduced reproductive success and compromised mutualistic networks that support forest regeneration are consequences of climate-induced changes in phenology, which include variations in the timing of flowering, fruiting, and migration. Furthermore, tropical forests are facing mounting threats to their potential to absorb carbon dioxide. This is because the negative effects of climate change, such as deforestation, decreased biomass, and impaired carbon storage capacity, are creating a vicious cycle that speeds up the process of global warming.

Climate Change Drivers Affecting Tropical Forests

Tropical forests, one of the most biologically diverse and ecologically significant ecosystems on Earth, are increasingly vulnerable to climate change's multiple drivers, which disrupt environmental stability and threaten countless species. Climate change has caused consistent increases in average surface temperatures, causing tropical regions to experience greater heat stress that affects plant physiology, animal behavior, and ecosystem productivity. In these regions, where many species have evolved within narrow climatic tolerances, even small temperature changes can have major impacts. Heat-sensitive amphibians and montane species face shrinking habitats as cooler refugia become scarcer, while higher temperatures accelerate evapotranspiration, drying soils and increasing drought vulnerability. Warming intensifies the hydrological cycle, causing lengthy droughts and irregular, intense rainfall events that undermine tropical forests' delicate water balance. Precipitation losses and longer dry seasons have reduced forest resilience and increased dieback danger in several locations, including the Amazon Basin. Drought stress weakens trees, making them more susceptible to pests and disease, slows regeneration, lowers carbon uptake, and favors drought-tolerant generalists over sensitive taxa. Conversely, excessive rainfall and flooding can cause soil erosion, root damage, and seedling loss, making forest ecosystems more unstable.

Climate change is also affecting tropical forests through more frequent and severe storms, cyclones, and wildfires. Wildfires are less common in moist tropical forests than savannas, but rising temperatures and prolonged droughts have greatly increased their frequency and intensity, especially in deforested and fragmented areas. Fires kill biodiversity, ruin habitat, release large amounts of carbon into the atmosphere, and trigger warming feedback cycles. Hurricanes and cyclones, albeit region-specific, uproot trees, remove canopies, and modify forest structure in ways that can take decades to recover. These disruptions reduce above-ground biomass and change competitive dynamics, favoring fast-growing pioneer species over slower-growing climax species, changing long-term forest composition.

Tropical forests are also threatened by anthropogenic factors that compound climate change and biodiversity loss. Agricultural growth, logging, mining, and infrastructural development deforest ecosystems, limit genetic diversity, and isolate people, making them less resilient to climate change. Edge effects including temperature swings, lower humidity, and higher sensitivity to invasive species exacerbate climate stress in fragmented forests. Fragmented Amazonian forests die more and recover slower from droughts, reducing resilience.

Deforestation and forest degradation release stored carbon and reduce tropical forests' carbon sink role, supporting global climate change and producing a deadly feedback cycle.

Climate change affects tropical forests indirectly through oceanic changes. Sea surface temperature changes impact atmospheric circulation patterns like the El Niño–Southern Oscillation (ENSO), causing extreme weather in tropical regions. El Niño episodes cause droughts and fires in Amazon and Southeast Asian forests, whereas La Niña events can cause flooding, destabilizing biological processes. Climate change-related sea-level rise threatens coastal tropical forests like mangroves, which protect inland trees from salty intrusion and storm surges. Losing these ecosystems reduces tropical forest resilience and ecological interconnectedness.

These climate change drivers influence tropical forest processes ecologically and systemically. Warming, changed precipitation, and extreme events disturb phenological cycles including flowering, fruiting, and migration, disrupting species interactions like pollination and seed distribution. Many specialized ecological niche species cannot adapt rapidly enough to these changes, whereas generalist and invasive species exploit new conditions, changing community dynamics. These shifts reduce biodiversity and functional integrity of tropical forests, reducing their ability to provide ecosystem services like carbon sequestration, climate regulation, water cycling, and soil fertility, which are vital for local communities and global ecological stability.

Impacts on Biodiversity

Tropical forests are experiencing profound, multifaceted, and increasingly evident impacts from climate change as rising temperatures, shifting rainfall regimes, and intensifying extreme events alter ecological dynamics, species distributions, and fundamental interactions that sustain their unparalleled richness. Species redistribute as plants and animals seek suitable climatic niches in response to warming and drying trends. Many tropical forest species are highly specialized and adapted to tight temperature and humidity ranges, rendering them susceptible to even little climate changes. As temperatures rise, montane species in the Andes and Southeast Asia must move upslope, but with limited altitudinal space, many risk “mountaintop extinction.” Many lowland species lack the dispersion capacity or corridors to change their ranges, causing population decreases and local extinctions. Dry spells reduce water availability and forest productivity, disproportionately affecting moisture-dependent taxa like amphibians, orchids, and epiphytic plants, while erratic rainfall and flooding disrupt bird, primate, and insect reproductive and feeding cycles.

Climate change interrupts life cycle events like flowering, fruiting, migration, and breeding, affecting biodiversity. Mismatches between interdependent species undermine ecological networks due to these alterations. If plants open earlier owing to rising temperatures but pollinators like bats or insects do not alter their activity, reproductive success decreases, causing plant population losses and cascading impacts on animals that eat those plants. Fruiting fluctuations can also affect seed dissemination and forest regeneration by disrupting frugivorous monkeys and birds' diets. Disruptions impair mutualistic interactions that underpin tropical forest biodiversity and can affect species composition and ecosystem structure over time.

Climate change is changing tropical forest interspecific interactions. Prey species range shifts or declines change predator-prey dynamics and food webs. Many tropical forest-specialized pollination and seed distribution systems are prone to failure, threatening plant recruitment and genetic diversity. As generalist and invading species benefit from changing climates, native species are competing more. In disturbed or stressed ecosystems, invasive plants, insects, and pathogens outcompete native taxa and reduce resilience. Invasive grasses in the Amazon cause more fires, producing feedback loops that turn forests into degraded savannas, destroying habitat for many forest-dependent species.

Climate change disproportionately affects certain taxa. Amphibians, which depend on moisture and have permeable skin, are among the most vulnerable species in tropical forests. Climate change affects food availability and habitat suitability, putting birds, especially those with specialized diets or migratory patterns, at risk. Due to drought and deforestation, orchids and other epiphytes depend on stable microclimates and host trees, which are at risk of extinction. Primates confront habitat loss and dwindling food resources as fruiting patterns evolve, whereas slow-reproducing species are less adaptable to quick changes. Some rodents, insects, and invasive plants, which have vast dietary and habitat ranges, may increase under climate change, changing community structures and perhaps lowering biodiversity quality even if species counts stay unchanged.

The cumulative biodiversity consequences affect ecosystem functioning and stability beyond species-level changes. Declines in keystone species like giant frugivores that disperse canopy tree seeds reduce forest renewal and species composition to smaller-seeded plants, diminishing structural diversity and carbon storage. Pollinator loss affects plant reproductive success, whereas apex predator loss destabilizes food webs, causing cascades that change ecosystem equilibrium. These biodiversity losses make tropical forests more vulnerable to fires, pests, and human exploitation, bringing them closer to ecological tipping points like the Amazon dieback, in which vast rainforests could become degraded savanna.

Biodiversity loss in tropical forests has serious socio-economic ramifications for forest-dependent societies. Native people depend on different species for food, medicine, cultural activities, and livelihoods, and biodiversity loss threatens these foundations. Declining biodiversity reduces ecosystem services including carbon sequestration, climate regulation, and water cycling, worsening global climate change and accompanying hazards. Biodiversity loss affects forest biomass and carbon storage, which increases greenhouse gas emissions and heat, which strains biodiversity—a vicious cycle that shows how climate change and biodiversity decline are linked.

Conclusion

Climate change is one of the biggest threats to tropical forests, which have the most life on Earth and regulate the planet's climate and support millions of people. Rising temperatures, altered precipitation patterns, prolonged droughts, intensified storms, and increased wildfires are reshaping these forests' ecological balance, pushing countless species beyond their adaptive limits and accelerating biodiversity loss at unprecedented rates. Amphibians, orchids, epiphytes, and montane taxa, which have narrow climatic niches, are at risk of extinction, while

generalists and invasive species gain competitive advantages, causing ecological homogenization and the breakdown of complex interspecies relationships like pollination, seed dispersal, and predator-prey dynamics. These changes weaken ecosystems, affect forest structure, and reduce carbon sequestration, water cycling, and soil fertility, causing feedback loops that worsen climate change. Biodiversity loss threatens global climate stability and food security, as well as indigenous and local populations' cultural, nutritional, medicinal, and livelihood resources. Conservation strategies like expanding protected areas, creating ecological corridors, assisted migration, ex-situ preservation, and community-based adaptation can reduce these risks, but they need integration with climate action, cross-border cooperation, and strong policy frameworks that prioritize biodiversity alongside development goals. A multi-scalar approach that balances local stewardship with global responsibility, scientific innovation with traditional ecological knowledge, and economic systems with ecological sustainability is needed to address the situation. Future research should focus on predictive modeling of climate-biodiversity interactions, remote sensing and big data monitoring, and adaptable methods for unpredictable futures. Preserving tropical forest biodiversity in the face of climate change is an ecological, moral, and socio-economic priority since losing these valuable ecosystems would irreparably harm the globe. In conclusion, tropical forest biodiversity loss is inextricably linked to climate change and requires urgent, coordinated, and sustained action to preserve these living reservoirs of diversity for future generations.

Bibliography

Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. *Ecosphere*, 6(8), 1–55. <https://doi.org/10.1890/ES15-00203.1>

Corlett, R. T. (2012). Climate change in the tropics: The end of the world as we know it? *Biological Conservation*, 151(1), 22–25. <https://doi.org/10.1016/j.biocon.2011.11.027>

Feeley, K. J., & Rehm, E. M. (2012). Amazon's vulnerability to climate change heightened by deforestation and man-made dispersal barriers. *Global Change Biology*, 18(12), 3606–3614. <https://doi.org/10.1111/gcb.12012>

Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., ... & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. *Nature*, 478(7369), 378–381. <https://doi.org/10.1038/nature10425>

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. *Trends in Ecology & Evolution*, 29(2), 107–116. <https://doi.org/10.1016/j.tree.2013.12.001>

Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the Anthropocene. *Annual Review of Environment and Resources*, 39, 125–159. <https://doi.org/10.1146/annurev-environ-030713-155141>

Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., ... & Torres-Lezama, A. (2009). Drought sensitivity of the Amazon rainforest. *Science*, 323(5919), 1344–1347. <https://doi.org/10.1126/science.1164033>

Pounds, J. A., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. L., Foster, P. N., ... & Young, B. E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. *Nature*, 439(7073), 161–167. <https://doi.org/10.1038/nature04246>

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., ... & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. *Proceedings of the National Academy of Sciences*, 108(24), 9899–9904. <https://doi.org/10.1073/pnas.1019576108>

Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., ... & Watson, J. E. M. (2016). The broad footprint of climate change from genes to biomes to people. *Science*, 354(6313), aaf7671. <https://doi.org/10.1126/science.aaf7671>

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., ... & Williams, S. E. (2004). Extinction risk from climate change. *Nature*, 427(6970), 145–148. <https://doi.org/10.1038/nature02121>

Wright, S. J., & Muller-Landau, H. C. (2006). The future of tropical forest species. *Biotropica*, 38(3), 287–301. <https://doi.org/10.1111/j.1744-7429.2006.00154.x>